La interpretación más aceptada del teorema de Bayes, es que su estructura permite el calculo de probabilidades después de haber sido realizado un experimento (probabilidades aposteriori), basándose en el conocimiento de la ocurrencia de ciertos eventos que dependan del evento estudiado, o sea, se parte de probabilidades conocidas antes de efectuar el experimento (probabilidades apriori), las cuales son afectadas por las probabilidades propias del experimento (las que aparecen durante la ocurrencia del evento).
Continuando nuestro análisis sobre el teorema de Bayes, la probabilidad condicional deAi dado B, para cualquier i, es:
Aplicando en el numerador la Regla de Multiplicación P(AiÇB) = P(Ai) P(B|Ai) y en el denominador el Teorema de Probabilidad Total P(B) = P(A1) P(B | A1) + P(A2) P(B | A2) + . . . + P(An) P(B | An), obtenemos la ecuación que representa al:
Teorema de bayes:
Ejemplo
A un congreso asisten 100 personas, de las cuales 65 son hombres y 35 son mujeres. Se sabe que el 10% de los hombres y el 6% de las mujeres son especialistas en computación. Si se selecciona al azar a un especialista en computación ¿Cuál es la probabilidad de que sea mujer?Solución
Definamos los eventos:
H: Sea un hombre
M: Sea una mujer
E: La persona sea especialista en computación
Tenemos que:
Por lo tanto:
No hay comentarios.:
Publicar un comentario